## Dispersion

We have seen that Average is a single figure which represents the entire distribution. Next step is to find how far the average represents the entire distribution. In other words we need to find how far the actual figures are situated away from the average ie we try to find the spread / dispersion / variation of actual values from the average.

Let us consider the following data:

| A | B | C |
| :--- | :--- | :--- |
| 100 | 75 | 180 |
| 100 | 150 | 100 |
| 100 | 75 | 20 |
| 100 | 100 | 100 |

Here average score is 100 runs for all 3 batsmen. It doesn't mean all of them are equally good. To know this we find deviation of observations from respective means. Greater the variation less representative the average is. Hence we have to consider the average for which such variation is the least.

The measures used for calculating dispersion are known as measures of dispersion.
Measures of Dispersion can be classified into two broad categories:

## Absolute \& Relative

Absolute measures give extent of variation for given set of observation, while relative measures is found to compare two or more sets of data w.r.t their variability.

## Range:

The range is the simplest method of calculating dispersion. It is defined as the difference between largest and the smallest observation.
$\mathrm{R}=\mathrm{L}-\mathrm{S}$
Relative measure

Coefficient of Range $=\frac{L-S}{L+S}$
Q1. Calculate the range and its coefficient
$50,60,53,55,57,59,58,55,54,61$
$R=L-S=61-50=11$
Coefficient of Range $=\frac{L-S}{L+S}=\frac{61-50}{61+50}=\frac{11}{111}=0.09$

## Quartile Deviation

Q.D. $=\frac{Q_{3}-Q_{1}}{2}$

Coefficient of Q.D. $=\frac{Q_{3}-Q_{1}}{Q_{3}+Q_{1}}$
Q2. Calculate Q.D and its coefficient for the following data $18,20,35,41,28,15,13$ Arrange the observations in ascending or descending order.

$$
\begin{aligned}
& 13,15,18,20,28,35,41 \\
& n=7, \text { odd }
\end{aligned}
$$

$\mathrm{Q} 1=$ value of $\frac{n+1}{4}$ th observation $=2^{\text {nd }}$ observation $=15$
Q3 $=$ value of $\frac{3(n+1)}{4}$ th observation $=6^{\text {th }}$ observation $=35$
Q.D. $=\frac{Q_{3}-Q_{1}}{2}=\frac{35-15}{2}=10$

Coefficient of Q.D. $=\frac{35-15}{35+15}=\frac{20}{50}=0.4=40 \%$

Q3. Calculate Q.D. and its coefficient for the following data

| x | f | Cf |
| :--- | :--- | :--- |
| 62 | 11 | 11 |
| 63 | 17 | 28 |
| 64 | 22 | 50 |
| 65 | 18 | 68 |
| 66 | 15 | 83 |
| 67 | 10 | 93 |
| 68 | 7 | 100 |

N = 100 , Even
$\mathrm{Q} 1=$ value of $\frac{n}{4}$ th observation $=25^{\text {th }}$ observation $=63$
$\mathrm{Q} 3=$ value of $\frac{3 n}{4}$ th observation $=75^{\text {th }}$ observation $=66$
Q.D. $=\frac{Q_{3}-Q_{1}}{2}=\frac{66-63}{2}=1.5$

Coefficient of Q.D. $=\frac{66-63}{66+63}=\frac{3}{129}=0.0232=2.325 \%$

Q4. Calculate Q.D. and its coefficient for the following data

| Class | f | Cf |
| :--- | :--- | :--- |
| $10-15$ | 4 | 4 |
| $15-20$ | 10 | 14 |
| $20-25$ | 16 | 30 |
| $25-30$ | 22 | 52 |
| $30-35$ | 10 | 62 |
| $35-40$ | 8 | 70 |
| $40-45$ | 6 | 76 |
| $45-50$ | 4 | 80 |

$\mathrm{N}=8 \mathrm{o}$, Even

Q1 Class is the class containing $\frac{N}{4}$ th $=\frac{80}{4}$ th $=20^{\text {th }}$ observation ie $\mathbf{2 0 - 2 5}$

$$
\begin{aligned}
& \mathrm{Q} 1=l_{1}+\frac{\left(\frac{N}{4}-c f\right) *\left(l_{2}-l_{1}\right)}{f} \\
& =20+\frac{\left(\frac{80}{4}-14\right) *(25-20)}{16} \\
& =20+\frac{(20-14) *(25-20)}{16} \\
& =20+\frac{(6) *(5)}{16}=20+1.875=21.875
\end{aligned}
$$

Q3 Class is the class containing $\frac{3 N}{4}$ th $=\frac{3 * 80}{4}$ th $=60^{\text {th }}$ observation ie $30-35$

$$
\begin{aligned}
\mathrm{Q} 3 & =l_{1}+\frac{\left(\frac{3 N}{4}-c f\right) *\left(l_{2}-l_{1}\right)}{f} \\
& =30+\frac{\left(\frac{3 * 80}{4}-52\right) *(35-30)}{10} \\
& =30+\frac{(60-52) *(35-30)}{10}=30+\frac{(8) *(5)}{10}=34
\end{aligned}
$$

Q.D. $=\frac{Q_{3}-Q_{1}}{2}=\frac{34-21.875}{2}=6.0625$

Coefficient of Q.D. $=\frac{34-21.875}{34+21.875}=\frac{12.125}{55.875}=0.217=21.7 \%$

Q5. Calculate Q.D. and its coefficient for the following data

| Weight | No. of <br> persons |
| :--- | :--- |
| $70-79$ | 12 |
| $80-89$ | 18 |
| $90-99$ | 35 |
| $100-109$ | 42 |
| $110-119$ | 50 |
| $120-129$ | 45 |
| $130-139$ | 20 |
| $140-149$ | 10 |

Inclusive intervals should be changed to exclusive intervals

| Weight | No. of <br> persons | Cf |
| :--- | :--- | :--- |
| $70.5^{-79.5}$ | 12 | 12 |
| $79.5^{-89.5}$ | 18 | 30 |
| $89.5^{-99.5}$ | 35 | 65 |
| $99.5^{-109.5}$ | 42 | 107 |
| $109.5^{-119.5}$ | 50 | 157 |
| $119.5^{-129.5}$ | 45 | 202 |
| $129.5^{-139.5}$ | 20 | 222 |
| $139.5^{-149.5}$ | 10 | 232 |

N = 232 , Even
Q1 Class is the class containing $\frac{N}{4}$ th $=\frac{232}{4}$ th $=58^{\text {th }}$ observation ie $89.5-99.5$

$$
\begin{aligned}
& \mathrm{Q} 1=l_{1}+\frac{\left(\frac{N}{4}-c f\right) *\left(l_{2}-l_{1}\right)}{f} \\
& =89.5+\frac{\left(\frac{232}{4}-30\right) *(99.5-89.5)}{35}
\end{aligned}
$$

$$
=89.5+\frac{(58-30) *(99.5-89.5)}{35}
$$

$$
=89.5+\frac{28 *(10)}{35}=89.5+8=97.5
$$

Q3 Class is the class containing $\frac{3 N}{4}$ th $=\frac{3 * 232}{4}$ th $=174^{\text {th }}$ observation ie 119.5-129.5

Q3 $=l_{1}+\frac{\left(\frac{3 N}{4}-c f\right) *\left(l_{2}-l_{1}\right)}{f}$
$=119.5+\frac{\left(\frac{3 * 232}{4}-157\right) *(129.5-119.5)}{45}$
$=119.5+\frac{(174-157) *(129.5-119.5)}{45}=119.5+3.77=123.27$
Q.D. $=\frac{Q_{3}-Q_{1}}{2}=\frac{123.27-97.5}{2}=12.885$

Coefficient of Q.D. $=\frac{123.27-97.5}{123.27+97.5}=\frac{25.77}{220.77}=0.1167=11.67 \%$

Q6. Calculate Q.D. and its coefficient for the following data

| Units <br> consumed | No. of <br> consumers | cf |
| :--- | :--- | :--- |
| o-200 | 18 | 18 |
| $200-400$ | 27 | 45 |
| $400-600$ | 32 | 77 |
| $600-800$ | 47 | 124 |
| $800-1000$ | 36 | 160 |
| $1000-1200$ | 40 | 200 |

$$
\text { N = } 200 \text {, Even }
$$

Q1 Class is the class containing $\frac{N}{4}$ th $=\frac{200}{4}$ th $=50^{\text {th }}$ observation ie $400-600$

$$
\begin{aligned}
\mathrm{Q}_{1} & =l_{1}+\frac{\left(\frac{N}{4}-c f\right) *\left(l_{2}-l_{1}\right)}{f} \\
& =400+\frac{\left(\frac{200}{4}-45\right) *(600-400)}{32} \\
& =400+\frac{(50-45) *(600-400)}{32}
\end{aligned}
$$

$=400+\frac{(5) *(200)}{32}=400+31.25=431.25$
Q3 Class is the class containing $\frac{3 N}{4}$ th $=\frac{3 * 200}{4}$ th $=150^{\text {th }}$ observation ie 8oo1000

$$
\begin{aligned}
\text { Q3 } & =l_{1}+\frac{\left(\frac{3 N}{4}-c f\right) *\left(l_{2}-l_{1}\right)}{f} \\
& =800+\frac{\left(\frac{3 * 200}{4}-124\right) *(1000-800)}{36} \\
& =800+\frac{(150-124) *(1000-800)}{36} \\
& =800+\frac{(26) *(200)}{36}=800+144.44=944.44 \\
& \text { Q.D. }=\frac{Q_{3}-Q_{1}}{2}=\frac{944.44-431.25}{2}=\frac{513.19}{2}=256.595
\end{aligned}
$$

Coefficient of Q.D. $=\frac{944.44-431.25}{944.44+431.25}=\frac{513.19}{1375.69}=0.373=37.3 \%$

## Mean Deviation

## Mean Deviation from Mean

Deviation means dispersion or difference.
Deviation of observations from mean is $\boldsymbol{x}-\overline{\boldsymbol{x}}$
Absolute Deviation is $|x-\bar{x}|$
Mean Absolute Deviation is $\frac{\sum|x-\bar{x}|}{n}$ (without frequency)
Mean Absolute Deviation is $\frac{\sum f|x-\bar{x}|}{\sum f}$ (with frequency)
Relative measure - Coefficient of Mean Absolute Deviation is
Mean Absolute Deviation from Mean
Mean

## Mean Deviation from Median

Mean Absolute Deviation is $\frac{\sum|x-M|}{n}$ (without frequency)

Mean Absolute Deviation is $\frac{\Sigma f|x-M|}{\Sigma f}$ (with frequency)
Relative measure - Coefficient of Mean Absolute Deviation is

$$
\frac{\text { Mean Absolute Deviation from Median }}{\text { Median }}
$$

## Mean Deviation from Mode

Mean Absolute Deviation is $\frac{\sum|x-Z|}{n}$ (without frequency)
Mean Absolute Deviation is $\frac{\sum f|x-Z|}{\sum f}$ (with frequency)
Relative measure - Coefficient of Mean Absolute Deviation is
Mean Absolute Deviation from Mode
Mode
Mean Deviation from A
Mean Absolute Deviation is $\frac{\sum|x-A|}{n}$ (without frequency)
Mean Absolute Deviation is $\frac{\sum f|x-A|}{\sum f}$ (with frequency)
Relative measure - Coefficient of Mean Absolute Deviation is
Mean Absolute Deviation from A
A

Q1. Calculate Mean Deviation from Mean and its coefficient $45,65,66,72,80,90,93,85,88,96$

| x | $x-\bar{x}$ | $\|x-\bar{x}\|$ |
| :---: | :---: | :---: |
| 45 | -33 | 33 |
| 65 | -13 | 13 |
| 66 | -12 | 12 |
| 72 | -6 | 6 |
| 80 | 2 | 2 |
| 90 | 12 | 12 |
| 93 | 15 | 15 |
| 85 | 7 | 7 |
| 88 | 10 | 10 |
| 96 | 18 | 18 |
| Total |  | 128 |

$\bar{x}=\frac{\sum x}{n}=\frac{780}{10}=78$
Mean Deviation from Mean $=\frac{\sum|x-\bar{x}|}{n}=\frac{128}{10}=12.8$

Coefficient of Mean Deviation $=\frac{\text { Mean Absolute Deviation from Mean }}{\text { Mean }}=\frac{12.8}{78}$

$$
=0.1641=16.41 \%
$$

Q2. Calculate Mean Deviation from Median
$45,65,66,72,80,90,93,85,88,96$

Arranged observations
$45,65,66,72,80,85,88,90,93,96$

| $\mathbf{X}$ | $x-M$ | $\|x-M\|$ |
| :---: | :---: | :---: |
| 45 | -37.5 | 37.5 |
| 65 | -17.5 | 17.5 |
| 66 | -16.5 | 16.5 |
| 72 | -10.5 | 10.5 |
| 80 | -2.5 | 2.5 |
| 85 | 2.5 | 2.5 |
| 88 | 5.5 | 5.5 |
| 90 | 7.5 | 7.5 |
| 93 | 10.5 | 10.5 |
| 96 | 13.5 | 13.5 |
| Total |  | 124 |

$\mathrm{N}=10$, even

Median $=\frac{\text { Value of 5th observation + Value of 6th observation }}{2}$

$$
=\frac{80+85}{2}=82.5
$$

Mean Deviation from Median $=\frac{\sum|x-M|}{n}=\frac{124}{10}=12.4$

Coefficient of Mean Deviation $=\frac{\text { Mean Absolute Deviation from Median }}{\text { Median }}$

$$
=\frac{12.4}{82.5}=0.1503=15.03 \%
$$

Q3. Calculate Mean Deviation from Mean and its coefficient

| $\mathbf{x}$ | $\mathbf{f}$ | $\mathbf{f x}$ | $\|x-\bar{x}\|$ | $\mathbf{f}\|\boldsymbol{x}-\overline{\boldsymbol{x}}\|$ |
| :---: | :---: | :---: | :---: | :---: |
| 5 | 3 | 15 | 10 | 30 |
| 10 | 4 | 40 | 5 | 20 |
| 15 | 6 | 90 | 0 | $\mathbf{0}$ |
| 20 | 5 | 100 | 5 | 25 |
| 25 | 1 | 25 | 10 | 10 |
| 30 | 1 | 30 | 15 | 15 |
| Total | 20 |  |  | 100 |

$\bar{x}=\frac{\sum f x}{\sum f}=\frac{300}{20}=15$
Mean Deviation from Mean $=\frac{\sum f|x-\bar{x}|}{\sum f}=\frac{100}{20}=5$
Coefficient of Mean Deviation $=\frac{\text { Mean Absolute Deviation from Mean }}{\text { Mean }}=\frac{5}{15}=\mathbf{0 . 3 3 3 3}$ $=33.33 \%$

Q4. Calculate Mean Deviation from Mean and its coefficient

| Age | No of <br> Employees | $\mathbf{x}$ | $\mathbf{f x}$ | $\|x-\bar{x}\|$ | $\mathbf{f}\|x-\bar{x}\|$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $20-22$ | 70 | 21 | 1470 | 6.08 | 425.6 |
| $22-24$ | 90 | 23 | 2070 | 4.08 | 367.2 |
| $24-26$ | 110 | 25 | 2750 | 2.08 | 228.8 |
| $26-28$ | 140 | 27 | 3780 | 0.08 | 11.2 |
| $28-30$ | 130 | 29 | 3770 | 1.92 | 249.6 |
| $30-32$ | 80 | 31 | 2480 | 3.92 | 313.6 |
| $32-34$ | 80 | 33 | 2640 | 5.92 | 473.6 |
| Total | 700 |  | 18960 |  | 2069.6 |

$\bar{x}=\frac{\sum f x}{\Sigma f}=\frac{18960}{700}=27.08$
Mean Deviation from Mean $=\frac{\Sigma f|x-\bar{x}|}{\Sigma f}=\frac{2069.6}{700}=2.96$
Coefficient of Mean Deviation $=\frac{\text { Mean Absolute Deviation from Mean }}{\text { Mean }}=\frac{2.96}{27.08}=.1093$ = $\mathbf{1 0 . 9 3} \%$

Q5. Calculate Mean Deviation from Median and its coefficient

| Length <br> of <br> illness | No of <br> patients | x | $\mathbf{c f}$ | $\|x-M\|$ | $\mathbf{f}\|x-M\|$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 - 1 4}$ | 5 | 7 | 5 | 24.7 | 123.5 |
| $14-28$ | 17 | 21 | 22 | 10.7 | 181.9 |
| $28-42$ | 17 | 35 | 39 | 3.3 | 56.1 |
| $42-56$ | 7 | 49 | 46 | 17.3 | 121.1 |
| $56-70$ | 7 | 63 | 53 | 31.3 | 219.1 |
| Total |  |  |  |  | 701.7 |

Median class is the class containing $\mathrm{N} / 2$ th $=26.5^{\text {th }}$ observation
Median class is 28-42

$$
\begin{aligned}
\mathrm{M} & =l_{1}+\frac{\left(\frac{N}{2}-c f\right) *\left(l_{2}-l_{1}\right)}{f} \\
& =28+\frac{(26.5-22) *(42-28)}{35} \\
& =28+\frac{(4.5) *(14)}{35}=31.7
\end{aligned}
$$

Mean Deviation from Median $=\frac{\sum f|x-M|}{\sum f}=\frac{701.7}{53}=13.24$

Coefficient of Mean Deviation $=\frac{\text { Mean Absolute Deviation from Median }}{\text { Median }}=\frac{13.24}{31.7}=$ $.4176=41.76 \%$

Q6. Calculate Mean Deviation from Median and its coefficient

| Total Sale <br> in oo's | No of <br> salesmen | $\mathbf{x}$ | cf | $\|x-M\|$ | $\mathbf{f}\|x-M\|$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 - 1 0 0}$ | 10 | 50 | 10 | 200 | 2000 |
| $100-200$ | 15 | 150 | 25 | 100 | 1500 |
| $200-300$ | 50 | 250 | 75 | 0 | 0 |
| $300-400$ | 20 | 350 | 95 | 100 | 2000 |
| $400-500$ | 5 | 450 | 100 | 200 | 1000 |
| Total |  |  |  |  | 6500 |

Median class is the class containing $\mathrm{N} / 2$ th $=50^{\text {th }}$ observation Median class is 200-300

$$
\begin{aligned}
\mathrm{M} & =l_{1}+\frac{\left(\frac{N}{2}-c f\right) *\left(l_{2}-l_{1}\right)}{f} \\
& =200+\frac{(50-25) *(300-200)}{50} \\
& =200+\frac{(25) *(100)}{50}=200+50=250
\end{aligned}
$$

Mean Deviation from Median $=\frac{\sum f|x-M|}{\sum f}=\frac{6500}{100}=65$

Coefficient of Mean Deviation $=\frac{\text { Mean Absolute Deviation from Median }}{\text { Median }}=\frac{65}{250}=0.26=$ 26\%

Q7. Calculate Mean Deviation from Mode and its coefficient

| $\mathbf{x}$ | $\mathbf{f}$ | $\|x-Z\|$ | $\mathrm{f}\|x-Z\|$ |
| :---: | :---: | :---: | :---: |
| 4 | 10 | 3 | 30 |
| 5 | 14 | 2 | 28 |
| 6 | 16 | 1 | 16 |
| 7 | 18 | 0 | 0 |
| 8 | 10 | 1 | 10 |
| 9 | 5 | 2 | 10 |
| Total | 73 |  | 94 |

## Mode $=$ Most frequent observation $=7$

Mean Deviation from Mode $=\frac{\sum f|x-Z|}{\sum f}=\frac{94}{73}=1.28$

Coefficient of Mean Deviation $=\frac{\text { Mean Absolute Deviation from Mode }}{\text { Mode }}=\frac{1.28}{7}=0.1839$ $=18.39 \%$

Q8. Calculate Mean Deviation from Mode and its coefficient

| Marks | No of <br> students | x | $\|x-Z\|$ | $\mathrm{f}\|x-Z\|$ |
| :---: | :---: | :---: | :---: | :---: |
| $30-40$ | 3 | 35 | 20 | $\mathbf{6 0}$ |
| $40-50$ | 15 | 45 | 10 | 150 |
| $50-60$ | 27 | 55 | 0 | 0 |
| $60-70$ | 15 | 65 | 10 | 150 |
| $70-80$ | 8 | 75 | 20 | $\mathbf{1 6 0}$ |
| $80-90$ | 2 | 85 | 30 | $\mathbf{6 0}$ |
| Total | 70 |  |  | $\mathbf{5 8 0}$ |

Modal class is the class containing highest frequency $=50-60$

$$
\begin{aligned}
\mathrm{Z} & =l_{1}+\frac{\left(f_{1}-f_{0}\right) *\left(l_{2}-l_{1}\right)}{2 f_{1}-f_{0}-f_{2}} \\
& =50+\frac{(27-15) *(60-50)}{2 * 27-15-15} \\
& =50+\frac{(12) *(10)}{24}=50+5=55
\end{aligned}
$$

Mean Deviation from Mode $=\frac{\sum f|x-Z|}{\sum f}=\frac{580}{70}=8.28$

Coefficient of Mean Deviation $=\frac{\text { Mean Absolute Deviation from Mode }}{\text { Mode }}=\frac{8.28}{55}=\mathbf{0 . 1 5 0 6}$ $=15.06 \%$

Q9. Calculate Mean Deviation from 200 and its coefficient

| Total Sale <br> in oo's | No of <br> salesmen | x | $\|x-200\|$ | $\mathrm{f}\|x-M\|$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 - 1 0 0}$ | 10 | 50 | 150 | 1500 |
| $100-200$ | 15 | 150 | 50 | 750 |
| $200-300$ | 50 | 250 | 50 | 2500 |
| $300-400$ | 20 | 350 | 150 | 3000 |
| $400-500$ | 5 | 450 | 250 | 1250 |
| Total |  |  |  | 9000 |

Mean Deviation from $200=\frac{\sum f|x-200|}{\sum f}=\frac{\mathbf{9 0 0 0}}{100}=\mathbf{9 0}$
Coefficient of Mean Deviation $=\frac{\text { Mean Absolute Deviation from Median }}{\text { Median }}=\frac{\mathbf{9 0}}{\mathbf{2 0 0}}=\mathbf{0 . 4 5}=$ $45 \%$

Q1o. Calculate Mean Deviation from Mean ,Median , Mode and their coefficients

| Rainfall | No of <br> days |
| :---: | :---: |
| $0-10$ | 15 |
| $10-20$ | 20 |
| $20-30$ | 40 |
| $30-40$ | 20 |
| $40-50$ | 5 |
| Total |  |

## Mean Deviation from Mean

| Rainfall | No of <br> days | $\mathbf{x}$ | $\mathbf{f x}$ | $\|x-\bar{x}\|$ | $\mathbf{f}\|\boldsymbol{x}-\overline{\boldsymbol{x}}\|$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0}-10$ | 15 | 5 | 75 | 18 | 270 |
| $10-20$ | 20 | 15 | 300 | 8 | $\mathbf{1 6 0}$ |
| $20-30$ | 40 | 25 | 1000 | 2 | 80 |
| $30-40$ | 20 | 35 | 700 | 12 | 240 |
| $40-50$ | 5 | 45 | 225 | 22 | 110 |
| Total | 100 |  | 2300 |  | 860 |

$\bar{x}=\frac{\Sigma f x}{\Sigma f}=\frac{2300}{100}=23$
Mean Deviation from Mean $=\frac{\Sigma f|x-\bar{x}|}{\sum f}=\frac{\mathbf{8 6 0}}{100}=8.6$
Coefficient of Mean Deviation $=\frac{\text { Mean Absolute Deviation from Mean }}{\text { Mean }}=\frac{8.6}{23}=.3739=$ 37.39\%

## Mean Deviation from Median

| Rainfall | No of <br> days | $\mathbf{x}$ | cf | $\|x-M\|$ | $\mathbf{f}\|x-M\|$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{o}-10$ | 15 | 5 | 15 | 18.75 | 281.25 |
| $10-20$ | 20 | 15 | 35 | 8.75 | 175 |
| $20-30$ | 40 | 25 | 75 | 1.25 | 50 |
| $30-40$ | 20 | 35 | 95 | 11.25 | 225 |
| $40-50$ | 5 | 45 | 100 | 21.25 | 106.25 |
| Total | 100 |  |  |  | 837.5 |

Median class is the class containing $\mathrm{N} / 2$ th $=50^{\text {th }}$ observation
Median class is 20-30

$$
\begin{aligned}
\mathrm{M} & =l_{1}+\frac{\left(\frac{N}{2}-c f\right) *\left(l_{2}-l_{1}\right)}{f} \\
& =20+\frac{(50-35) *(30-20)}{40} \\
& =20+\frac{(15) *(10)}{40}=20+3.75=23.75
\end{aligned}
$$

Mean Deviation from Median $=\frac{\sum f|x-M|}{\sum f}=\frac{837.5}{100}=8.375$
Coefficient of Mean Deviation $=\frac{\text { Mean Absolute Deviation from Median }}{\text { Median }}=\frac{8.375}{23.75}$
$=0.3526=35.26 \%$

## Mean Deviation from Mode

| Rainfall | No of <br> days | $\mathbf{x}$ | $\|x-Z\|$ | $\mathbf{f}\|x-Z\|$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0}-10$ | 15 | 5 | 20 | 300 |
| $10-20$ | 20 | 15 | 10 | 200 |
| $20-30$ | 40 | 25 | 0 | 0 |
| $30-40$ | 20 | 35 | 10 | 200 |
| $40-50$ | 5 | 45 | 20 | 100 |
| Total | 100 |  |  | 800 |

Modal class is the class containing highest frequency $=20-30$

$$
\begin{aligned}
\mathrm{Z} & =l_{1}+\frac{\left(f_{1}-f_{0}\right) *\left(l_{2}-l_{1}\right)}{2 f_{1}-f_{0}-f_{2}} \\
& =20+\frac{(40-20) *(30-20)}{2 * 40-20-20} \\
& =20+\frac{(20) *(10)}{40}=20+5=25
\end{aligned}
$$

Mean Deviation from Mode $=\frac{\sum f|x-Z|}{\sum f}=\frac{800}{100}=8$

Coefficient of Mean Deviation $=\frac{\text { Mean Absolute Deviation from Mode }}{\text { Mode }}=\frac{8}{25}=\mathbf{0 . 3 2}$ $=32 \%$

